Real-time Measurements of the
Mixing State of Elemental Carbon

Prof. Kim Prather
Dept. of Chemistry and Biochemistry
Scripps Institution of Oceanography
University of California, San Diego



Questions

* What are the limits 1n our ability to measure freshly emitted
and ambient BC?

* What are the limits 1n our ability to determine the sizes and
chemical composition of aerosols emitted by BC sources?



The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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Figure 3: Many external factors force climate change.
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Figure 21. Comparison of BC radiative forcing predictions versus BC global burden by various
authors. The color of the data points 1s coded to the authors, and their shapes correspond to the
assumptions made about the mixing state of the acrosols.

Chung and Seinfeld, JGR 107, D19, 4407, doi:10.1029/2001JD001397, 2002



Single Particle Mass Spectrometry
(ATOFMS)

Direct measure of mixing state (chemical associations)
High temporal resolution
Millions of particles (statistics)

S1ze-resolved composition

Output: Size-resolved number fractions of major PM
sources

Ultimate goal: Determine the role of specific PM
sources on climate forcing and regional variability
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S1zes of EC vs. OC (Ambient)
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Fraction of Particles
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EC Mixing State—Fresh Emissions (0.1-1 pm)
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INDOEX ACE-Asia
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The global mean radiative forcing of the climate system
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Figure 3: Many external factors force climate change.



* What are the limits 1n our ability to measure freshly emitted
and ambient BC?

What 1s “BC” and “EC*?

Historically operationally defined

What do we care about? All absorbing species?

Can differentiate between BC from different sources
Has different optical and physical properties

* What are the limits 1n our ability to determine the sizes and
chemical composition of aerosols emitted by BC sources?

Units of size—geometric, mobility, acrodynamic, optical
Need size resolved mixing state information
(bulk measurements may be misleading)



Conclusions

e Very important to understand source impact on
climate forcing (treating individual species can be
misleading)



Atmospheric Absorption versus Biomass

1.20E+03 25

ACE-Asia: Spring 2001
1.00E+03 -
11 20
Strong EC signature
2 sonseon from different source =
2 =
S =
L2 6.00E+02 =
3 | s
o | )
= 4.00E+02 - ) :E
<R
i! b I
g 1T LA
-00E+02 i !' i l‘ W “ ‘* r V‘
2005402 38 I’ J‘ s \' )‘J . 4,\
0.00E+00 0

85 8 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
Julian DOY
neg45 —neg59 — Potassium — neg89 —— AAbsorb(sub)

* neg45, negd9, and K (submicron) biomass marker ions



Conclusions

* Suggestion: Target sources producing particles
affecting climate with regulations (not just

individual species)

 Need better link between measurements and

models

— Provide closure between satellite and ground based
measurements, emissions inventories (sources), sinks,
important chemical processes



Comparisons (CIFEX; April 2004)
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Compact TOF (Spring 2005)
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Link optical properties directly with
sources and aging processes
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